llllllll

Information Coding / Computer Graphics, ISY, LiTH

Lecture 12
Reduction
A few more CUDA issues

Sorting on GPU

1(74)

llllllll

Information Coding / Computer Graphics, ISY, LiTH

Last time
- Coalescing
- Constant memory
* Texture memory

- OpenGL interoperability

2(74)

Information Coding / Computer Graphics, ISY, LiTH

Lab 5

Reduction

Sorting on the GPU

3(74)

- COMNG .,
\!

& "4,
s -
- -

. -
. .
-
|
%

£ T

Information Coding / Computer Graphics, ISY, LiTH

So what is lab 5 about?

Parallellize bitonic merge sort.

Start from a fairly parallel friendly
implementation

Very easy to parallellize for small data sets (i.e.
up to 512-1024)

Some more work to make it run with larger data

4(74)

d Information Coding / Computer Graphics, ISY, LiTH
P/

“
4,
v W

Not much use for shared memory
inlab 4 and 5

Lab 6 is focused entirely on shared memory -
but in OpenCL

5(74)

12} Information Coding / Computer Graphics, ISY, LiTH

“
.....

Lecture questions

1) How can you efficiently compute the average
of a dataset with CUDA?

2) In what way does bitonic sort fit the GPU
better than many other sorting algorithms?

3) What is the reason to use pinned memory?

4) What problem does atomics solve?

6(74)

!!!!!!

Information Coding / Computer Graphics, ISY, LiTH

Reduction

Parallelizing problems of limited parallel nature

7(74)

g Information Coding / Computer Graphics, ISY, LiTH
=

Examples of reduction algorithms
Extracting small data from larger
* Finding max or min
- Calculating median or average
* Histograms

Common problems!

8(74)

Information Coding / Computer Graphics, ISY, LiTH

Sequentially trivial
Loop through data
Add/min/max, accumulate results

Fits badly in massive parallelism!

9(74)

..........

"d’&: Information Coding / Computer Graphics, ISY, LiTH
% v/

Tree-based approach

1235 (43 (15) (3)(31) (22) (8,
3y @43 3y @2

111111

. COMNG

$¢ %k
. \ -
2 > |

Mo |

Information Coding / Computer Graphics, ISY, LiTH

In 2D, typically 4-to-1 per level
Pyramid hierarchy

la7] 2] 3 [57] 5 12“
10206131415“ | -
19 11 21 22 23 68 25 26 47 57 ISH
38 29 64 31 32 33 35 34 ——————) 38 64 68 35
37 28 39 49 53 42 41 52 46 49 61 52
46 1 48 40 61 51 44 43 [2}[67 69 70
55 71 4 58 69 62 50 60
l30‘65|66 67 24 59 70 56

11(74)

12} Information Coding / Computer Graphics, ISY, LiTH

“
.....

Tree-based approach

Each level parallel! Can be split onto large
numbers of threads

but

the parallelism is reduced for each level, and
the results need to be reorganized to a
smaller number of threads!

12(74)

Information Coding / Computer Graphics, ISY, LiTH

16

\
8 1235 (4305 (3) B
4 3y 43

12} Information Coding / Computer Graphics, ISY, LiTH

“
.....

Multiple kernel runs for varying size!

For n =k downto 0 do
Launch 2" kernels

Multiple levels can be merged into one - but not all

of them!

14(74)

% Information Coding / Computer Graphics, ISY, LiTH

Important note: You can not
synchronize between blocks!

Why?

- Complex hardware
- Risk for deadlock between blocks
that are not simultaneously active

(Picture by Mark Harris, NVidia)

15(74)

"d’ﬁi Information Coding / Computer Graphics, ISY, LiTH
44

"l
4y
»’\7; » v

Multiple levels per kernel run for
avoiding overhead

8 blocks

N\ \ / P 4
ey ™ ~ 7 -~ -
; Level 1:
1 block

(Picture by Mark Harris, NVidia)

16(74)

12} Information Coding / Computer Graphics, ISY, LiTH

“
%%%%%

Many important optimizations:

- Avoid "If" statements, divergent branches
 Avoid bank conflicts in shared memory
 Loop unrolling to avoid loop overhead

(classic old-style optimization!)

17(74)

Gy,
-

g Information Coding / Computer Graphics, ISY, LiTH
P/

I’l
4,
£ T

Huge speed difference reported by Harris

Step Cumulative
Time (222 ints) Bandwidth gpeedup Speedup

Kernel 1:

interleaved addressing 8.054ms 2.083 GB/s

with divergent branching

Kernel 2:

interleaved addressing 3.456 ms 4.854 GB/s 2.33x 2.33x
with bank conflicts

Kemel 3: 1.722ms 9.741GB/s 2.01x 4.68x
sequential addressing

Kernel 4:

e I e 0.965 ms 17.377 GB/s 1.78x 8.34x
Atk 0.536ms 31.280GB/s 1.8x 15.01x
unroll last warp

Kernelo: 0.381 ms 43.996 GB/s 1.41x 21.16x
SN 0.268ms 62.671GB/s 1.42x 30.04x

multiple elements per thread

18(74)

121 Information Coding / Computer Graphics, ISY, LiTH

“
.....

Conclusions:

* Multiple kernel runs for varying problem size
 Multiple kernel runs for synchronizing blocks
- Optimizing matters! Not only shared memory and
coalescing!

19(74)

